
ESTIMATING NORMALIZED GRAPH LAPLACIANS IN FINANCIAL MARKETS

José Vinı́cius de M. Cardoso1, Jiaxi Ying1, Sandeep Kumar2, Daniel P. Palomar1

The Hong Kong University of Science and Technology1,
Indian Institute of Technology Delhi2,

Clear Water Bay, Hong Kong SAR, China,
New Delhi, Delhi, India

ABSTRACT

Gaussian Markov random fields, a class of graphical models,
play an increasingly important role in real-world problems,
where they are often applied to uncover conditional correla-
tions between pairs of entities in a network. Motivated by
recent applications of graphs in financial markets, we inves-
tigate the problem of learning undirected, weighted, normal-
ized, graphical models. More precisely, we design an opti-
mization algorithm to learn precision matrices that are mod-
eled as normalized graph Laplacians. The proposed algorithm
takes advantages of frameworks such as the alternating di-
rection method of multipliers and projected gradient descent,
which allows us to decompose the original problem into sub-
problems that can be solved efficiently. We demonstrate the
empirical performance of the proposed algorithm, in com-
parison to state-of-the-art benchmark models, in a number of
datasets involving financial time-series.

Index Terms— graphical models, normalized Laplacian,
financial markets, time series, estimation theory

1. INTRODUCTION

Graph learning from data has been a problem of critical im-
portance for the statistical graph learning and graph signal
processing fields [1, 2], with direct impact on applied areas
such as unsupervised learning, clustering [3, 4, 5], applied fi-
nance [6], network topology inference [7], and community
detection [8]. In addition, graph matrices play a fundamental
role for graph neural networks [8].

In financial markets, graphical models were initially in-
vestigated in [9] that concluded that learning topological ar-
rangements in a stock market context reveals economic fac-
tors that may affect price data evolution. Other benefits that
graphical models bring to applications in financial markets
have been extensively discussed in the literature. A repre-
sentative, yet not exhaustive, list of examples include: (i)

This work was supported by the Hong Kong GRF 16207820 research
grant. Sandeep’s work is supported by the DST Inspire faculty grant
MI02322G.

identifying “business as usual” and “crash” periods via as-
set tree graphs [10], (ii) constructing networks of companies
based on graphs [10], (iii) leveraging properties of graphs into
follow-up tasks such as hierarchical portfolio designs [11],
(iv) exploring graph properties such as degree and eigenvec-
tor centralities for market crash detection and portfolio con-
struction [12], and (v) community detection in financial stock
markets [13].

The basic idea behind graph learning is to answer the fol-
lowing question: given a data matrix whose columns repre-
sent observations measured at the graph nodes, how can one
design a graph that best fits such data matrix without possi-
bly any (or with at most partial) knowledge of the underlying
graph structure?

While estimators for connected graphs have been well
studied [2, 14], some of their properties, such as sparsity, are
yet being investigated [15]. Recently, [3, 5, 4, 16] proposed
optimization programs for learning graphs with structure such
as bipartite and k-component graphs, as this classes of graph
are appealing models for clustering tasks due to the spectral
properties of the Laplacian and adjacency matrices.

In finance, prior information about stocks is available via
sector classification systems such as the Global Industry Clas-
sification Standard (GICS) [17] or the Industry Classification
Benchmark (ICB) [18]. However, stocks may have impact on
multiple industries, e.g., the evident case of technology com-
panies, whose influence on prices affect stocks not only in
their own sector, but spans across multiple sectors.

Motivated by challenging applied finance tasks such as es-
timation of conditional correlations, we investigate the prob-
lem of learning undirected, weighted, normalized graphs from
a Gaussian Markov random field (GMRF) framework [15].
In addition, the wide success of graphical models in applied
areas can be arguably attributed to the development of fast,
scalable optimization algorithms pioneered by [1, 19]. From
that perspective, the main contributions of this paper are as
follows:

1. We propose a novel formulation to learn normalized
Laplacian matrices from a GMRF perspective.

2. We design an optimization algorithm for such formula-



tion based on the alternating direction method of mul-
tipliers (ADMM) [20] and projected gradient descent
(PGD) [21].

3. We present empirical results that reveal the outperfor-
mance of the proposed estimation scheme when com-
pared to state-of-the-art methods.

2. BACKGROUND

We denote an undirected, weighted graph as a triple G =
(V, E ,W ), where V = {1, 2, . . . , p} is the vertex (or node)
set, E ⊆ {{u, v} : u, v ∈ V, u 6= v} is the edge set, that is,
a subset of the set of all possible unordered pairs of p nodes
such that {u, v} ∈ E iff nodes u and v are connected. W ∈
Rp×p+ is the symmetric weighted adjacency matrix that satis-
fiesWii = 0,Wij > 0 iff {i, j} ∈ E andWij = 0, otherwise.
The combinatorial, unnormalized graph Laplacian matrix L
is defined, as usual, as L ,D−W , whereD , Diag(W1)
is the degree matrix.

The data generating process is assumed to be a zero-
mean, GMRF x ∈ Rp, such that xi is the random variable
generating a signal measured at node i, whose rank-deficient
precision matrix is modeled as a graph Laplacian matrix.
This model is also known as Laplacian-constrained Gaus-
sian Markov Random Field (LGMRF) [15]. Assume we are
given n observations of x, i.e., X = [x1,x2, . . . ,xn]

>,
X ∈ Rn×p. The goal of graph learning algorithms is to learn
a Laplacian matrix given only the data matrix X , i.e., often
without any knowledge of E .

To that end, the classical penalized Maximum Likelihood
Estimator (MLE) of the Laplacian-constrained precision ma-
trix of x, on the basis of the observed dataX , may be formu-
lated as the following optimization program [2, 14]:

minimize
L�0

tr (LS)− log det∗ (L) ,

subject to L1 = 0, Lij = Lji ≤ 0,
(1)

where det∗(L) is the generalized determinant, i.e., the prod-
uct of the positive eigenvalues of L, S is a similarity ma-
trix, e.g., the sample covariance (or correlation) matrix S ∝
X>X .

3. PROPOSED FORMULATION AND ALGORITHM

In this section we describe the proposed formulation for learn-
ing a normalized graph Laplacian matrix from data.

The symmetric normalized graph Laplacian, denoted as
Θ , and the unnormalized adjacency matrix are related as fol-
lows:

Θ ,D−1/2LD−1/2 = I −D−1/2WD−1/2. (2)

Assuming that the data generating process is now a
GMRF whose precision matrix is modeled as a normalized

Laplacian of a connected graph, we write the MLE of Θ as
the following optimization problem:

minimize
Θ�0,D,W

tr (ΘS)− log det∗ (Θ) ,

subject to Θ = I −D−1/2WD−1/2,
Θij = Θji ≤ 0, i 6= j, rank(Θ) = p− 1,
ΘD1/21 = 0, D = Diag(W1).

(3)
Leveraging the linear operators for the adjacency [4] and

degree [16] matrices, we are able to express the normalized
Laplacian matrix as

Θ = I − (Dw)−1/2Aw(Dw)−1/2, (4)

which relate those quantities to the vector of edge weights
w ∈ Rp(p−1)/2+ .

Plugging (4) into (3), we rewrite Problem (3) as follows:

maximize
Θ,w≥0

tr
(
(Dw)−1/2Aw(Dw)−1/2S

)
+ log det∗ (Θ) ,

subject to Θ = I − (Dw)−1/2Aw(Dw)−1/2,
rank(Θ) = p− 1.

(5)

We note that the constraints ΘD1/21 = 0 and D =
Diag(W1), originally part of Problem (3), have been dropped
from Problem (5) as a result of the following lemma:

Lemma 1 Any Θ in the feasible set of Problem (5) satisfies
the constraint Θ (Dw)

1/2
1 = 0.

Proof The proof follows directly from the definition of
the normalized Laplacian matrix as well as the fact that
Aw1 = Dw1 for any w ≥ 0.

We further simplify Problem (5) by introducing a slack
variable Ψ ∈ D, Ψ , (Dw)−1/2, where D is defined as

D ,
{
Ψ ∈ Rp×p |Ψii > 0 ∀ i ∈ [p], Ψij = 0 ∀ i 6= j

}
,
(6)

i.e., the set of p× p positive definite diagonal matrices.
Then, our proposed formulation for learning a normalized

Laplacian matrix is given as follows:

minimize
Θ,w≥0,Ψ

− log det∗ (Θ)− tr (ΨAwΨS) ,

subject to Θ = I −ΨAwΨ, Ψ−2 = Dw,
rank(Θ) = p− 1, w ≥ 0, Ψ ∈ D.

(7)

Remark I: We note that, in practice, we only need to consider
the diagonal elements of Ψ (as its off-diagonal elements are
zero) and we could rewrite Ψ = Diag(ψ), ψ ∈ Rp++, but
we will stick with the current style for the sake of notational
simplicity.



3.1. ADMM Solution

In this subsection, we use ADMM to design an iterative algo-
rithm for the optimization program stated in Problem (7).

The partial augmented Lagrangian of Problem (7) is:

Lρ(Θ,w,Ψ,Y ,Z) = − log det∗ (Θ)− tr (ΨAwΨS)

+
ρ

2
‖Θ− I + ΨAwΨ‖2F +

ρ

2
‖Ψ−2 −Dw‖2F

+ 〈Θ− I + ΨAwΨ,Y 〉+ 〈Ψ−2 −Dw,Z〉, (8)

where Z and Y are dual variables associated to the equality
constraints.

3.1.1. Subproblem for Θ

The subproblem for Θ can be written as

Θ? = arg min
Θ

ρ
2‖Θ− I + ΨAwΨ‖2F + 〈Θ,Y 〉

− log det∗ (Θ) ,
subject to rank (Θ) = p− 1.

(9)

Lemma 2 The global minimizer of Problem (9) is [22]

Θ? =
1

2ρ
U
(
Γ +

√
Γ2 + 4ρI

)
U>, (10)

where UΓU> is the eigenvalue decomposition of ρ(I −
ΨAwΨ) − Y with Γ ∈ Rp−1×p−1 containing the largest
p − 1 eigenvalues along its diagonal and U ∈ Rp×p−1
containing the corresponding eigenvectors.

3.1.2. Subproblem for w

The subproblem with respect to w can be written as

w? = arg min
w≥0

f(w;Θ,Ψ,Y ,Z), (11)

where

f(w;Θ,Ψ,Y ,Z) ,
ρ

2
‖Θ− I + ΨAwΨ‖2F (12)

+
ρ

2
‖Dw −Ψ−2‖2F + 〈ΨAwΨ,Y − S〉 − 〈Dw,Z〉.

Problem (11) is a nonnegative, convex quadratic program
(QP), however, due to the large number of variables, i.e.,
O(p2), using a disciplined convex programming language
such as cvxpy [23] or even calling directly a QP solver is
prohibitive. Instead, we update w via a simple projected
gradient descent, with backtracking line search, designed as
in Algorithm 1.

More precisely, the gradient of the objective function (13)
is as follows:

∇wf(w;Θ,Ψ,Y ,Z) = ρA∗ [Ψ (ΨAwΨ + (Θ− I)
+ρ−1 (Y − S)

)
Ψ
]
+ ρD∗

(
Dw −Ψ−2 − ρ−1Z

)
, (13)

and the stepsize αl is computed via the backtracking line
search as follows:

f
(
wl+1

)
≤ f

(
wl
)
+
〈
∇f

(
wl
)
,wl+1 −wl

〉
+

1

2αl
‖wl+1 −wl‖2F. (14)

Algorithm 1: PGD for Subproblem (11)

1 while l ≤ maxiter do
2 wl+1 ←

(
wl − αl∇f(wl)

)+
, where αl is

chosen such that (14) is satisfied
3 if ‖wl+1 −wl‖∞ ≤ ε then
4 return wl+1

5 end
6 end

3.1.3. Subproblem for Ψ

The subproblem for Ψ can be written as

Ψ? ∈ argmin
Ψ∈D

g(Ψ;Θ,w,Y ,Z), (15)

where

g(Ψ;Θ,w,Y ,Z) ,
ρ

2
‖Θ− I + ΨAwΨ‖2F (16)

+
ρ

2
‖Ψ−2 −Dw‖2F + 〈ΨAwΨ,Y − S〉+ 〈Ψ−2,Z〉.

Because Problem (15) is nonconvex, we use gradient de-
scent to find a local minima. Note that elements of the set
D satisfy two constraints: (i) Ψij = 0 for i 6= j, and (ii)
Ψii > 0 for i ∈ [p]. The first constraint can be trivially ac-
counted for by enforcing Ψ0

ij = 0, whereas the second con-
straint is handled via backtracking line search.

More specifically, we have the iterate

Ψl+1 = Ψl − αl∇Ψg
(
Ψl
)
, (17)

where∇g
(
Ψl
)

is the gradient of the objective function in (15)
at Ψl, which is computed as

∇g
(
Ψ;Θ,w,Y ,Z

)
= ρ(ΨAwΨΨAw +AwΨΨAwΨ)

+ ρ
(
− 2Ψ−5 + 2Dw �Ψ−3

)
+
(
Y − S + ρ(Θ− I)

)
ΨAw

+AwΨ
(
Y − S + ρ(Θ− I)

)
− 2Ψ−3 �Z, (18)

where � denotes the elementwise product.
The backtracking line search condition is

g
(
Ψl+1

)
≤ g
(
Ψl
)
+
〈
∇g
(
Ψl
)
, Ψl+1 −Ψl

〉
+

1

2αl
∥∥Ψl+1 −Ψl

∥∥2
F
,
[
Ψl+1

]
ii
> 0, ∀ i ∈ [p]. (19)



Algorithm 2 describes the gradient descent scheme to up-
date Ψ. The updates for the dual variables Z and Y are done
via gradient ascent as in the ADMM framework. Algorithm 3
summarizes our proposed approach for learning a normalized
Laplacian matrix.

Algorithm 2: Gradient descent for Subproblem (15)

1 while l ≤ maxiter do
2 Ψl+1 ← Ψl − αl∇g(Ψl), where αl is chosen

such that (19) is satisfied
3 if ‖Ψl+1 −Ψl‖∞ ≤ ε then
4 return Ψl+1

5 end
6 end

Algorithm 3: Normalized Laplacian Learning

1 while convergence criteria not met do
2 . update Θl+1 via Lemma 2
3 . update wl+1 via Algorithm 1
4 . update Ψl+1 via Algorithm 2

5 Zl+1 = Zl + ρ
((

Ψl+1
)−2 −Dwl+1

)
6 Y l+1 = Y l+ρ

(
Θl+1 − I + Ψl+1Awl+1Ψl+1

)
7 end

Remark II: In spite of significant advancements in conver-
gence theory of ADMM-like algorithms in nonconvex sce-
narios, see e.g. [24], a thorough convergence proof must be
done for Algorithm 3. We left this analysis as future work.

4. EXPERIMENTAL RESULTS

4.1. US Stock Data

In this experiment, we compare the performance of the nor-
malized Laplacian estimated via Algorithm 3 and the un-
normalized version estimated via the methods in [2, 14] in
learning graphs of financial stocks. Performance is measured
in terms of the modularity of the estimated graph [25] – the
higher the modularity, the higher is the separation of the
graph in clusters, which is a stylized fact in stock markets
[6]. More precisely, we select 79 stocks from three sectors of
the S&P500 and use as data their daily returns over a period
of 1006 trading days from Jan 2nd 2014 to Dec 29th 2017.
We can observe from Fig. 1 that the graph estimated from the
normalized Laplacian has a higher modularity and as a result
it is likely a better representation of the actual financial net-
work than that of the graph estimated from the unnormalized
Laplacian.

(a) Normalized Laplacian,
proposed (modularity = 0.50).

(b) Unnormalized Laplacian
([2, 14]) (modularity = 0.40).

Fig. 1: Performance of the estimators for S&P500 stocks.

4.2. Empirical Convergence

Convergence is a critical aspect of any iterative algorithm.
In order to verify the empirical convergence of Algorithm 3,
we generate synthetic data following the GMRF model where
the underlying graph is a random graph with 128 nodes. We
then measure the convergence trend in terms of the residuals
over iterations. We repeat this process over 100 realizations.
Fig. 2 shows that Algorithm 3 presents a good empirical con-
vergence by achieving low residuals in just a few iterations.

0 5 10 15
Iteration number l

10−3

10−2

10−1

100

101

ρ‖Θl+1 −Θl‖F

‖Θl − (I −ΨlAwlΨl)‖F

Fig. 2: Convergence trend in synthetic data.

5. CONCLUSION

In this paper we proposed an estimator for the normalized
Laplacian matrix of a graph under the GMRF assumption.
Results using financial time-series data from stock markets re-
veal that the normalized Laplacian provides an improved rep-
resentation of financial networks than the conventional Lapla-
cian matrix. Future work will analyse the convergence of the
proposed algorithm as well as extend the proposed formula-
tion to settings such as k-component and bipartite graphs as
well as heavy tail assumptions on the data generating process.



6. REFERENCES

[1] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse in-
verse covariance estimation with the graphical lasso,”
Biostatistics, vol. 9, pp. 432–41, 2008.

[2] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning
from data under Laplacian and structural constraints,”
IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 6, pp. 825–841, 2017.

[3] F. Nie, X. Wang, M. I. Jordan, and H. Huang, “The
constrained Laplacian rank algorithm for graph-based
clustering,” in Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016, AAAI’16, pp.
1969–1976.

[4] S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palo-
mar, “A unified framework for structured graph learning
via spectral constraints,” Journal of Machine Learning
Research, vol. 21, pp. 1–60, 2020.

[5] S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palo-
mar, “Structured graph learning via laplacian spectral
constraints,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[6] G. Marti, F. Nielsen, M. Bińkowski, and P. Donnat, “A
review of two decades of correlations, hierarchies, net-
works and clustering in financial markets,” in arXiv:
1703.00485, 2017.

[7] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro,
“Connecting the dots: Identifying network structure via
graph signal processing,” IEEE Signal Processing Mag-
azine, vol. 36, no. 3, pp. 16–43, 2019.

[8] Z. Chen, L. Li, and J. Bruna, “Supervised community
detection with graph neural networks,” in International
Conference on Learning Representations, 2019.

[9] R. N. Mantegna, “Hierarchical structure in financial
markets,” The European Physical Journal B, vol. 11,
no. 1, pp. 193–197, 1999.

[10] J.-P. Onnela, K. Kaski, and J. Kertész, “Clustering and
information in correlation based financial networks,”
The European Physical Journal B, vol. 38, pp. 353–362,
2004.

[11] T. Raffinot, “Hierarchical clustering-based asset alloca-
tion,” The Journal of Portfolio Management, vol. 44,
2018.

[12] T. Millington and M. Niranjan, “Partial correlation fi-
nancial networks,” Applied Network Science, vol. 5,
2020.

[13] R. Ramakrishna, H. Wai, and A. Scaglione, “A user
guide to low-pass graph signal processing and its appli-
cations,” arXiv e-prints: 2008.01305, 2020.

[14] L. Zhao, Y. Wang, S. Kumar, and D. P. Palomar, “Op-
timization algorithms for graph laplacian estimation via
ADMM and MM,” IEEE Transactions on Signal Pro-
cessing, vol. 67, no. 16, pp. 4231–4244, 2019.

[15] J. Ying, J. V. de M. Cardoso, and D. P. Palomar,
“Nonconvex Sparse Graph Learning under Laplacian-
structured Graphical Model,” in Advances in Neural In-
formation Processing Systems (NeurIPS), 2020.

[16] J. V. M. Cardoso, J. Ying, and D. P. Palomar, “Graphical
models in heavy-tailed markets,” in Advances in Neural
Information Processing Systems (NeurIPS’21), 2021.

[17] Morgan Stanley Capital International and S&P Dow
Jones, “Revisions to the global industry classification
standard (gics) structure,” 2018.

[18] A. Schreiner, Equity Valuation Using Multiples: An Em-
pirical Investigation, Springer, 2019.

[19] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, “Model
selection through sparse maximum likelihood estima-
tion for multivariate gaussian or binary data,” Journal
of Machine Learning Research, vol. 9, no. 15, pp. 485–
516, 2008.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Founda-
tions and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[21] D. P. Bertsekas, Nonlinear Programming, Athena Sci-
entific, 1999.

[22] D. M. Witten and R. Tibshirani, “Covariance-
regularized regression and classification for high dimen-
sional problems,” Journal of the Royal Statistical Soci-
ety. Series B (Statistical Methodology), vol. 71, no. 3,
pp. 615–636, 2009.

[23] S. Diamond and S. Boyd, “CVXPY: A Python-
embedded modeling language for convex optimization,”
Journal of Machine Learning Research, vol. 17, no. 83,
pp. 1–5, 2016.

[24] Y. Wang, W. Yin, and J. Zeng, “Global convergence of
admm in nonconvex nonsmooth optimization,” Journal
of Scientific Computing, vol. 78, pp. 29–63, 2019.

[25] M. E. J. Newman, “Modularity and community structure
in networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 103, 2006.


